NAS Hardware Selection (2012)
Requirements
In 2012, my current storage server (NAS) was running full, so I wanted to buy a replacement server. I now have 4(!) external disk drives connected to my main desktop, and wanted to reduce that number. Also, I now often decommission smaller size disks which would still be useful in a server. So my first requirement was a system with at least four drive bays, but preferably more.
I first considered (in order from low price to high quality) a LaCie 5big network 2, Synology DS412+, Drobo FS, or IX Systems' FreeNAS mini and QNAP TS-559 Pro II. All these systems have four or five 3.5" disk bays, and range from €300 to €750 without disks. Add about €100 for each Terabyte disk.
Two requirements prompted my to build my own solution:
- Services
- The server should run the SMB and AFP protocols, as well as allow direct playing
- Price
- Building your own solution costs about the same for the bare system, but is more powerful and is cheaper per terabyte.
So I decided to build a custom FreeBSD (or FreeNAS) system. Not only would that give flexibility, it also allows me to play with ZFS, my favourite file system.
Choice of chassis
I mostly considered Fractal Design and Li Lian chassis, which offer a good wide choice in products. My first decision is what size I wanted to case to be. There are a few cases of less than 10 litre which allow 4 disks, like the [Lian Li PC-Q12]. However, that would limit myself to 2.5" disk bays. I wanted at least six 3.5" bays, and it was possible to achieve this in a mini-tower chassis of 20-25 litre. For comparison, a regular tower PC typically is 30-35 litre in size. Good choices in this size where the Fractal Design Array R2 NAS Chassis (with six 3.5" and one 2.5" disk bays) and the Lian Li PC-Q25 (with seven 3.5" and one 2.5" disk bays, where five of the 3.5" bays are hot swappable). Both these cases support mini-ITX and mini-DTX motherboard (the difference is that a mini-ITX has one expansion slot, and the mini-DTX has two expansion slots).
I picked the Lian Li PC-Q25 after reading a few favourable reviews. For those interested: the specification of the disk bays is somewhat confusing. The PC-Q25 can support eight disks at most. Five of these are in a hot swappable disk bay, the other three on a fixed metal plated. The middle location on the metal plate must be a 2.5" disk; the other locations can be either 2.5" or 3.5" disks.
Choice of CPU
My biggest hurdle was the choice between a low power CPU soldered on the motherboard or a regular pluggable CPU with some more power. CPU World certainly helped me compare the different CPUs. I naïvely thought that "a Atom CPU would do", not realising that there are many types of Atom CPUs, AMD alternatives, and also other juicy CPUs that only consume 30-35 Watt of power.
For starters, I looked up the benchmark of CPUs that I used previously. My 3-year old MacBook Pro benchmarks at 1501, while a consumer laptop my wife just bought now benchmarks at 2668. Those are the high-ends for me. The low end is my Soekris net6501 router which also runs FreeBSD. While it's load is near-zero for the switching routing and VPN it does now, it is sluggish when I want to compile a new tool. So that's my low-end. A colleague with his own NAS had a Sempron 140 at first, but recently upgrade to a Athlon II x2 250e so he could use it as a more spicy server.
CPU | Frequency | #Core (Threads) | L2+L3 cache | TPD | socket | GPU | Benchmark |
---|---|---|---|---|---|---|---|
Intel Core 2 Duo E6600 | 2.4 GHz | 2 | 4.0 MiB | 65 W | LGA 775 | no | 1501 |
AMD A8-3510MX | 1.8 GHz | 4 | 4.0 MiB | 45 W | FS1 | yes | 2668 |
Intel Atom E640 | 1.0 GHz | 1 (2) | 0.5 MiB | 3 W | BGA 1466 (onboard) | yes | 250 |
AMD Sempron 140 | 2.7 GHz | 1 | 1.0 MiB | 45 W | AM3 | no | 752 |
AMD Athlon II x2 250e | 3.0 GHz | 2 | 2.0 MiB | 45 W | AM3 | no | 1680 |
CPU | Frequency | #Core (Threads) | L2+L3 cache | TPD | socket | Benchmark | |
AMD Fusion C-60 | 1.0 GHz | 2 | 1.0 MiB | 9 W | BGA 413 (onboard) | yes | 563 |
AMD G-T56N | 1.6 GHz | 2 | 1.0 MiB | 18 W | BGA 413 (onboard) | yes | 721 |
AMD E350 | 1.6 GHz | 2 | 1.0 MiB | 18 W | BGA 413 (onboard) | yes | 726 |
AMD E450 APU | 1.7 GHz | 2 | 1.0 MiB | 18 W | BGA 413 (onboard) | yes | 740 |
Intel Atom D525 | 1.8 GHz | 2 (4) | 1.0 MiB | 13 W | BGA 559 (onboard) | yes | 714 |
Intel Atom N550 | 1.5 GHz | 2 (4) | 1.0 MiB | 9 W | BGA 559 (onboard) | yes | 568 |
Intel Atom N2800 | 1.9 GHz | 2 (4) | 1.0 MiB | 7 W | BGA 559 (onboard) | yes | 723 |
Intel Atom D2700 | 2.1 GHz | 2 (4) | 1.0 MiB | 10 W | BGA 559 (onboard) | yes | 818 |
Intel Celeron G530T | 2.0 GHz | 2 | 2.5 MiB | 35 W | LGA 1155 | yes | 1800 |
Intel Pentium G620T | 2.2 GHz | 2 | 3.5 MiB | 35 W | LGA 1155 | yes | 2261 |
Intel Pentium G630T | 2.3 GHz | 2 | 3.5 MiB | 35 W | LGA 1155 | yes | 2344 |
Intel Pentium G640T | 2.4 GHz | 2 | 3.5 MiB | 35 W | LGA 1155 | yes | 2400 |
Intel i3-2100T | 2.5 GHz | 2 (4) | 3.5 MiB | 35 W | LGA 1155 | yes | 3290 |
Intel i3-2120T | 2.6 GHz | 2 (4) | 3.5 MiB | 35 W | LGA 1155 | yes | 3088 |
Intel i5-2390T | 2.7 GHz | 2 (4) | 3.5 MiB | 35 W | LGA 1155 | yes | 4004 |
I was extremely impressed with the benchmark of the Intel Atom D2700 compared to its power usage. Since Atoms, like AMD E350s are only used as soldered onboard a motherboard, its availability is limited by the motherboards available. While making my purchase, no suitable motherboard was available with a Atom N2800 or D2700. I briefly considered a low power Intel core i3 variant, like the i3-2100T. After some consideration (including the $200 price increase for motherboard, cooling and separate CPU), I decided that my NAS wouldn't need that power, and decided that any low-power CPU with benchmark over 700 would do. That's comparable to an AMD Sempron, and good enough for basic file I/O and an occasional compile of a new kernel.
Choice of Motherboard
Mini-ITX has one expansion slot; mini-DTX has two expansion slots. So it's important to determine how many slots are needed. The main requirement for my motherboard was clearly the number of SATA ports. I needed as much as eight(!) SATA ports, and no motherboard had this many available. So I needed one expansion slot for a SATA card. Some (but not all) Jetway motherboards could use a SATA daughter board, so that would free the regular expansion slot. Unfortunately, the Jetways that support the SATA daughter board all have an old PCI instead of a PCI-express expansion slot, so that turned out to be a pig in a poke. I decided to rather buy a SATA adapter for a PCI-express slot. All modern CPUs (all AMD, Intel Atom, Pentium and Core listed above) have an internal graphics chips (GPU) on-board, so I didn't need a separate graphics card (it's a server after all). So my requirement was just one PCI-express slot, so I could use either mini-ITX or mini-DTX motherboard. In practice, a mini-DTX is harder to get by, so I ended up with mini-ITX.
Here are the issues I paid attentions at:
- Brand
- I was surprised to see that the better brands (like [Intel], [Supermicro] and to some extend [Jetway]) where not the best choices. Not only where they more expansive, they often didn't have a low-power product. So I mostly looked at [Asus], [ASRock], and to lesser extend [Gigabyte], [Jetway], [Zotac] and [Sapphire].
- SATA II or SATA III
- At the time of purchase, SATA III (aka SATA-600) was getting more common. SATA-300 is certainly good enough for a regular hard disk drive, though SATA-600 might be useful for a solid state drive.
- Expansion slots
- Nearly all motherboards has a PCI-expression version 2.0 x16 (sixteen lane) slot, but only x4 (four lanes) are wired. Despite the difference in advertisement as either "PCI-e x4" or "PCI-e 2.0 x16", there was no difference in practice. Attention was necessary: some motherboards still featured old PCI slots instead of PCI-express, while others supported the newer PCI-e 3.0 standard.
- USB 2 or USB 3
- At the time of purchase, USB 3 was getting more common.
- Memory
- All models support DDR3, although some use regular 240-pin DIMM slots and others the "laptop" 204-pin SO-DIMM slots. The amount of memory that can be installed, and the speed of the DIMMs did differ considerably,
- Network
- All models provided one gigabit Ethernet slot. Some motherboards has on-board wifi, but the later was a non-issue for me: wifi is way too slow (both in bandwidth and in latency) for a NAS.
- mini PCI-e/mSATA
- A few motherboards had a mini PCI-e slot. Such a slot has the same form factor as a mSATA slot, but the latter is not standardised and in practice most mini PCI-e can only be used to connect a wifi circuit, but not a mini SATA disk. If you want to connect a disk, check for mSATA support.
- RAID
- While I want to connect multiple disk with ZFS (sometime referred to as RaidZ), so I don't want hardware RAID. From experiments in 2010 on a very high end system, we found that software RAID was as fast as hardware RAID. All models support both (legacy) IDE and AHCI modes. AHCI is slightly faster than IDE, but IDE is still the default setting in most BIOS, so be sure to turn it on before installing the Operating System.
- Video connector
- I have seen any combination of VGA, DVI and HDMI on the motherboard. Most build-in graphics processors even support two (but not three) concurrent displays.
- Serial port
- I would liked a serial port. Most motherboard still offer an on-board serial connector, but few still provide an external RS-232 port. Those that do tend to be the more expensive non low-power motherboards.
- FreeBSD support
- It may be worth while to check support for certain hardware by the OS before purchase. This is particular true for expansion cards which usually feature a specific chipset.
The table below lists some of the better options. Despite My first choice was the [Asus E35M1-I], but I learned that it was no longer available just when I wanted to make the purchase. The [E35M1-I deluxe] and [E45M1-I] were a lot more expensive, and had one fewer SATA-600 port (it was replaced with eSATA). My second choice was the [Sapphire PURE Mini E350], but I decided against by lack of proper online documentation. The next choice was [ASRock E350M1/USB3], which I bought.
Motherboard | CPU | Southbridge | SATA2 (3Gb/s) | SATA3 (6Gbps) | eSATA | Memory | Graphics | RAID | Expansion slot | USB | Video | Extra |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Asus E35M1-I | AMD E350 | AMD A50M | 0 | 6 | 0 | 2× DDR3 DIMM | Radeon HD 6310 | no (IDE / AHCI) | PCI-E 2.0 x4 | 6 USB2 | DVI + VGA | |
Asus E35M1-I DELUXE | AMD E350 | AMD A50M | 0 | 5 | 1 | 2× DDR3 DIMM | Radeon HD 6310 | no (IDE / AHCI) | PCI-E 2.0 x4 | 2 USB3 + 4 USB2 | HDMI + VGA | |
Gigabyte GA-E350N-USB3 | AMD E350 | AMD A50M | 0 | 4 | 0 | 2× DDR3 DIMM | Radeon HD 6310 | no (IDE / AHCI) | PCI-E 2.0 x4 | 2 USB3 + 4 USB2 | HDMI + DVI + VGA | |
Sapphire PURE Mini E350 | AMD E350 | AMD A50M | 0 | 5 | 1 | 2× DDR3 SODIMM | Radeon HD 6310 | no (IDE / AHCI) | PCI-E 2.0 x4 | 2 USB3 + 4 USB2 | HDMI + DVI + VGA | mini PCIe (no mSATA) |
ASRock E350M1 | AMD E350 | AMD A50M | 0 | 4 | 1 | 2× DDR3 DIMM | Radeon HD 6310 | no (IDE / AHCI) | PCI-E 2.0 x4 | 6 USB2 | HDMI + DVI + VGA | |
ASRock E350M1/USB3 | AMD E350 | AMD A50M | 0 | 4 | 1 | 2× DDR3 DIMM | Radeon HD 6310 | no (IDE / AHCI) | PCI-E 2.0 x4 | 2 USB3 + 4 USB2 | HDMI + DVI + VGA | |
Asus E45M1-I DELUXE | AMD E450 APU | AMD A50M | 0 | 5 | 1 | 2× DDR3 DIMM | Radeon HD 6320 | no (IDE / AHCI) | PCI-E 2.0 x4 | 2 USB3 + 4 USB2 | HDMI + VGA | wifi |
Asus AT5NM10T-I | Intel Atom D525 | Intel NM10 | 4 | 0 | 0 | 2× DDR3 SODIMM | Intel GMA3150 | no (IDE / AHCI) | PCI-E 1.0 x4 | 6 USB2 | VGA | |
Supermicro X7SPA-H-D525 | Intel Atom D525 | Intel ICH9R | 6 | 0 | 0 | 2× DDR3 SODIMM | Intel GMA3150 | yes (optional) | PCI-E 2.0 x4 | 2 USB2 | VGA | 2x Ethernet port |
Asus P8H67-I | Intel Core (separate) | Intel H67 | 4 | 2 | 0 | 2× DDR3 DIMM | on Intel core CPU | yes (optional) | PCI-E 2.0 x16 | 2 USB3 + 6 USB2 | HDMI + DVI + VGA | |
Asus P8H67-I DELUXE | Intel Core (separate) | Intel H67 | 2 | 2 | 1 | 2× DDR3 SODIMM | on Intel core CPU | yes (optional) | PCI-E 2.0 x16 | 2 USB3 + 4 USB2 | HDMI + DVI + VGA | |
Asus P8H67-I PRO | Intel Core (separate) | Intel H67 | 2 | 2 | 1 | 2× DDR3 SODIMM | on Intel core CPU | yes (optional) | PCI-E 2.0 x16 | 2 USB3 + 4 USB2 | HDMI + DVI + VGA | wifi |
Gigabyte GA-H67N-USB3-B3 | Intel Core (separate) | Intel H67 | 2 | 2 | 1 | 2× DDR3 DIMM | on Intel core CPU | yes (optional) | PCI-E 2.0 x16 | 2 USB3 + 4 USB2 | 2xDVI + VGA | |
Zotac H67-ITX-C-E | Intel Core (separate) | Intel H67 | 4 | 2 | 1 | 2× DDR3 SODIMM | on Intel core CPU | yes (optional) | PCI-E 2.0 x16 | 2 USB3 + 4 USB2 | HDMI + DVI | wifi |
Asus P8H77-I | Intel Core (separate) | Intel H77 | 4 | 2 | 0 | 2× DDR3 DIMM | on Intel core CPU | yes (optional) | PCI-E 2.0 x16 | 2 USB3 + 6 USB2 | HDMI + DVI + VGA | |
Intel DQ67EP | Intel Core (separate) | Intel Q67 | 2 | 2 | 2 | 2× DDR3 DIMM | on Intel core CPU | yes (optional) | PCI-E 2.0 x16 | 2 USB3 + 4 USB2 | 2x DVI | mini PCIe (no mSATA) |
Jetway (J)NF9E Q77 | Intel Core (separate) | Intel Q77 | 4 | 2 | 0 | 2× DDR3 SODIMM | on Intel core CPU | yes (optional) | PCI-E 2.0 x16 | 2 USB3 + 3 USB2 | HDMI + DVI + VGA | RS232 port; 2x Ethernet port |
Asus P8Z77-I DELUXE | Intel Core (separate) | Intel Z77 | 2 | 2 | 2 | 2× DDR3 DIMM | on Intel core CPU | yes (optional) | PCI-E 2.0 x16 | 4 USB3 + 4 USB2 | HDMI + DVI | wifi |